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where V@ is the volume of the tetrahedron element (e) given by

I x1 i =
i 1 x2 y2 22
1 x3 y3 23
1 x4 ys 24
X2 y2 22 ! ‘ 1. y2 22
and o= x3 y3 23 |, bi==) 1 y3 z3 |
Xs Y4 Z4 \ 1 ys 24
x2 1 a2 x2 »n 1
ca=—| x3 1 zz |, di==| x3 y3 1
xse 1 za | 1 xe ya 1

The other constants are obtained by the interchange of the s'ubécripts in the
order 1234. Substituting (8.102) into (8.100) we get
u‘" (x, A ‘) =N (x, h ) Z) 1+ N2 (x’ Y Z) w2+ N3 (xv Vi z)u:
+Na(x, y, 2)us

= Nto) g (8.103)
where

N© =[Ny N2 N3 Nd]
¢© =[u; uz us ua]”

N/.- ﬁ,—l(;)—(a;+b:x+c,y+dyz), i= 1(1)4 (8.104) '

We find that the sﬁape functions satisfy

Ni(xs, yy z))=
0, i#j
The location of any point P (x, y, z) € () can be defined in terms of the
volume coordinates (L1, La, L3, L4) given by

vol P234 vol P341
L=—7— L=——w~
P412 | Pl
=tk g, ol (8.105)

The volume coordinate system is also known as local or natural coordinate
system. Since (sce Figure 8.5(b)) )

vol P234+vol P341 +vol P412 +vol P123 = V1
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4(0,0,0,1)
3(0,0,1,0)
(1,0,0,0 )1
2(0,1,0,0)
Fig. 8.6 (b) Volume coordinate for a tetrahedron element
We can write , C
Li+ L+ Ly+L4=1 (8.106)
Further we have
' Li= N; i=1(1)4 (8.107)

and the coordinates of the vertices 1,2, 3 and 4 in terms of<he local coor-

dinates become (1;-0, 0, 0), (0, 1,0, 0) 0,0,1,0),(0,0,0, 1), respectively.
The cartesian and local coordmates are related by

x=x1Ny +£2Nz+x3N3 +x4Ny
‘y'-lel +y2N2+ y3N3+ y4Ns
z=z1N1+22N2+23N3+ 24N (8.108)

Using (8.106) and (8.105), we may express the local coordinates in terms of
of the cartesian coordinates

Ly a b e d r 1 ,
L2 a b c2 d} x
(8.109)
Ly | . a by c3 ds y
Ls, a4 be co dy z

The differentiation and mtegratlon formulas corresponding to (8.70) and
(8.72) are given by

aN, 3L1
]q 3L, x
i dN, 2L,
‘§ 3, o
0N1 oN, aL; .
N R T 32 (8.110)
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rl st el gl 6V@
(r+s+t+q+3)

LIL3LSL dV =
V()

(8.111)

where

o _b 9y ¢ o _ 4
ox “6V@ 2 Jy "6V@ > Tz "6V

and r, 5, t, g are positive integers.

Higher degree piecewise polynomial
The pth degree piecewise polynomial in three space variables x, y and z
may be written as

»
UNx, y,2) Y axtyt (8.112)
r+s+i=0

where the parameters ars are determined by using the interpolation condi-
tions. We choose 3 (p+ 1)(p-+2)(p+ 3) nodes on the tetrahedron element (¢).
The equation (8.112) in terms of the nodal values u; is of the form

N
)= iz_'_" Ni(x, y, Du; (8.113)

where N is the number of nodes in the element. The shape functions N; of
(8.113) can be generated using the natural coordinates L1, L2, L3, and Le.
The distribution of nodes for the piecewise quadratic (p = 2) and cubic (p = 3)
polynomials are shown in Figures 8.6(c) and 8.6(d).

Quadratic Lagrange polynomial
The piecewise quadratic polynomial becomes

10
uX(x, y, z)= f\;x Nuy (8.114)

where (see Fig. 8.6(c))
Ni=L{2L;-1), i=1,2,3,4
Ns=4L1L,, Ne=4La2Ls, N1=4L1L;
Ng=4L1L4, No=4LyLs, Nio=4L3L4

Cubic Lagrange polynomial
The piecewise cubic polynomial becomes

20
uXx, y, 2)= ;:l N (8.115)

where (see Fig. 8.6(d)) for corner nodes
Ni=iL(3L;-1)(3L;-2), i=1, 2,3,4



550

2

Fig. 8.6 (¢) Quadratic element
with ten nodes

for one-third nodes of edges

Ns=3L1L2(3Ls1-1), .

Ny=§L2L3(3L2-1),
and for midface nodes .
Nir=27L1L3Ls,
Nio=27LtL;sLa4,

8.4.6 Hexahedron element

NUMERICAL SOLUTIONS,

Fig. 8.6 (d) Cubic element with twenty
nodes

Ne=3$L1Lx(3L2—-1)
Ng=3L2L3(3L3- 1), etc

Nig=27L2L3L4
Nao=27LiL2L3

_The three dimensional domain R can also be discretized using the hexa-
hedron elements with four quadrilateral faces. We choose an arbitrary hexa-
hedron element (e) with eight nodal points (x;, y4,2:), i = 1(1)8 at the corners.
The function value at the node i is represented by u;,. We take the origin of
the local coordinates (¢, 1, {) at the point of intersection of the lines joining
the mid-points of the opposite faces of the hexahedron and define the sides
by £é=41, n=::1 and {=+1 as shown in Figure 8.7(a). The transfor-

mation
8
X= 2 N,-x;,
i=1
R
= z Nizi
{ee)
where

Ni=3(Q + &€ +7m)(1 +Lb)

[61 €2 6364 és €6 o £)T=[~1
[1 12 M3 M4 1s m6 M7 78] T =] — 1
12l lelslslrls]T=[-1

8
y= % No,

(8.117)

(8.118)
1 1 -1-1 1 l-l]?'
-1 1 1-1-11 1fF
-1-1-1 1 11 1IF

transforms the hexahedron element (e) into a cube | é|=1, | n{=1, ] {[=1

as shown in Figure 8.7(b).

@8.116)
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